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Abstract We present a locally conservative spectral least-squares formulation for
the scalar diffusion-reaction equation in curvilinear coordinates. Careful selection
of a least squares functional and compatible finite dimensional subspaces for the
solution space yields the conservation properties. Numerical examples confirm the
theoretical properties of the method.

1 Introduction

Least-squares finite element methods for partial differential equations reformulate
PDEs into unconstrained minimization problems. The sum of weighted equation
residuals measured in suitable Sobolev norms defines the least-squares functional.
Norm-equivalent least-squares functionals give rise to symmetric and strongly co-
ercive variational problems. These properties are inherited on conforming finite di-
mensional subspaces of the solution space. Therefore, conforming finite element
discretizations circumvent inf-sup conditions and are always symmetric, positive
definite, which make these discrete systems amenable to well-established iterative
solvers.

Exceptional stability of least-squares formulations has led to the widespread use
of standard C0 elements in their discreteization. Unfortunately, resulting finite el-
ement methods are only approximately conservative, which generally leads to vi-
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olation of fundamental physical properties, such as loss of mass or artificial vor-
ticity generation in potential flows. In many cases this drawback can outweigh po-
tential advantages of least squares methods; see [10, 19]. As a result, improving
conservation properties of least-squares methods has attracted significant attention
[5, 6, 8, 10, 12, 13, 14].

2 Conservative least-squares functional

We explain our approach using the following diffusion-reaction problem [2]

−∇ ·A∇φ + γφ = f in Ω ,
φ = g on ΓD ,

n ·A∇φ = h on ΓN ,
(1)

where Ω ⊂Rd , d = 2,3, has a Lipschitz-continuous boundary ∂Ω =ΓD∪ΓN and n is
the outward unit normal to ∂Ω . We assume that A is a symmetric positive definite
tensor and γ is a real-valued, strictly positive function, i.e., there exist constants
fmin, fmax,γmin,γmax > 0 such that

fminξ
T

ξ ≤ ξ
TA(x)ξ ≤ fmaxξ

T
ξ and γmin ≤ γ(x)≤ γmax , (2)

for all x ∈Ω and ξ ∈ TxΩ . The tensor A and the function γ describe material prop-
erties. For instance, in heat transfer applications A is the thermal conductivity of the
material and γ can be related to the specific heat capacity.

This scalar problem can be recast as an equivalent four-field problem, given by

∇ ·u+ψ = 0 in Ω ,

v+∇φ = 0 in Ω ,

v = A−1u in Ω ,

ψ = γφ − f in Ω ,
and

φ = g on ΓD ,

−n ·u = h on ΓN .
(3)

We will refer to the equations ∇ ·u+ψ = 0 and v+∇φ = 0 as the conservation laws.
The first one expresses the fact that the net amount of outflow, u, over the surface of
any body ω ⊂Ω balances the volumetric production terms ψ . The second equation
states that circulation of v over any closed loop is zero. We call such equations
topological because they are independent of material parameters and only involve
geometric concepts like surface, body and closed loop. With proper selection of
discrete variables these equations can be satisfied exactly.

On the other hand, the equations v = A−1u and ψ = γφ − f depend explicitly
on the material parameters A and γ and the right hand side term f . We refer to
these equations as the constitutive relations. Their association with geometry is less
obvious; for instance v = A−1u equates circulation of v along a curve to the flux
of u across a surface. This geometrical incompatibility between the variables is an
important source of errors in many numerical methods.

The two sets of equations play very different mathematical and physical roles.
The constitutive relations prescribe functional relationships between the variables,
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which represent simplified summaries of more complex physical phenomena, i.e.,
these equations are based on modeling assumptions. The material-dependent data is
generally obtained through experiment and is not known exactly. On the other hand,
the conservation laws express fundamental balance relationships between global
quantities that hold universally, i.e., these equations do not involve modeling as-
sumptions.

In this paper we consider a least-squares functional originally proposed in [2]:

J ((φ ,v),(ψ,u); f ) =
1
2

(∥∥A−1/2(u+A∇φ
)∥∥2

0+∥∥γ−1/2
(
γφ +∇ ·u− f

)∥∥2
0

∥∥v+∇φ
∥∥2

0 +
∥∥∇ ·u+ψ− f

∥∥2
0

)
,

(4)

and its associated least-squares principle

min
(φ ,v)∈U,(ψ,u)∈V

J ((φ ,v),(ψ,u); f ) (5)

where U = H1(Ω)× (L2(Ω))n and V = L2(Ω)×H(div,Ω).

Proposition 1. The least-squares functional (4) is norm-equivalent with respect to
the solution space U = H1(Ω)× (L2(Ω))n and V = L2(Ω)×H(div,Ω).

Proof. See [2].

Proposition 2. The solution of (5) satisfies the conservation laws in the L2 sense.

Proof. The proof follows by taking variations of (4) with respect to v and ψ .

3 A mimetic least-squares method

Because strong coercivity is inherited on subspaces, conforming finite element
spaces of H1(Ω) and H(div,Ω) such as standard C0 elements will give a well-posed
least-squares finite element method. Since the inception of least-squares methods
this has often been quoted as one of its principal advantages. However, if we want
Proposition 2 to hold at the discrete level, we need to ensure that the discrete conser-
vation laws, ∇ ·u+ψ = 0 and v+∇φ = 0, can be represented on these subspaces,
i.e. if (φ h,vh) ∈ Gh×Ch with Gh ⊂ H1(Ω) and Ch ⊂

(
L2(Ω)

)n, we need to have
that ∇φ h ∈Ch for all φ h ∈ Gh. Similarly, for (ψh,uh) ∈ Sh×Dh with Sh ⊂ L2(Ω)
and Dh ⊂ H(div,Ω) we require that ∇ · uh ∈ Sh for all uh ∈ Dh. Thus, the finite
dimensional spaces forming Uh = Gh×Ch and V h = Sh×Dh need to belong to a
discrete DeRham complex, [5, 17]. With the spectral element basis functions from
[11] this is indeed the case. With these spectral basis functions, the conservation
laws can be exactly satisfied and reduce to simple relations between the expansion
coefficients. In addition, the discrete conservation laws do not depend on the size
or shape of the grid and will be independent of the order of the spectral element
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approximation. The discrete conservation laws only depend on the topology of the
grid, see for instance [2, 16] for a more extensive explanation.

Let Ω0 = [−1,1]2 be the reference spectral element with coordinates (ξ ,η) and
Φ : Ω0 → Ω , (x,y) = Φ(ξ ,η). We expand the pullback of the potential, Φ?φ h,
in terms of a tensor product of Lagrange polynomials, hi, associated with the GLL
points of polynomial degree N in both ξ - and η-direction, see also [9] and [2] for
the transformations

Φ
?
φ

h(ξ ,η) =
N

∑
i=0

N

∑
j=0

φi, jhi(ξ )h j(η) , (6)

and Φ?v as

Φ
?vh(ξ ,η) =

N

∑
i=1

N

∑
j=0

ui, jei(ξ )h j(η)+
N

∑
i=0

N

∑
j=1

vi, jhi(ξ )e j(η) , (7)

where the edge ei(ξ ) are given by, [11]

ei(ξ ) =−
i−1

∑
k=0

dhk(ξ ) . (8)

In terms of these expansions the conservation law v+∇φ = 0 assumes the form

Φ
?vh +∇Φ

?
φ

h =
N

∑
i=1

N

∑
j=0

(ui, j +φi, j−φi−1, j)ei(ξ )h j(η)+

N

∑
i=0

N

∑
j=1

(vi, j +φi, j−φi, j−1)hi(ξ )e j(η) = 0 .

(9)

Since basis functions are linear independent, (9) holds if and only if

ui, j +φi, j−φi−1, j = 0 and vi, j +φi, j−φi, j−1 . (10)

The pullback of the fluxes, Φ?uh, is expanded in terms of tensor products of edge
functions and Lagrange polynomials as, see [2, 11, 15] for details

Φ
?uh(ξ ,η) =

N

∑
i=0

N

∑
j=1

pi, jhi(ξ )e j(η)−
N

∑
i=1

N

∑
j=0

qi, jei(ξ )h j(η) . (11)

Finally, the pullback of ψh, Φ?ψh is expanded as

Φ
?
ψ

h(ξ ,η) =
N

∑
i=1

N

∑
j=1

ψi, jei(ξ )e j(η) . (12)

With these particular expansions the conservation law ∇ ·u+ψ = 0 can be expressed
as a relation between the expansion coefficients
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pi, j− pi−1, j +qi, j−qi, j−1 +ψi, j = 0 . (13)

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Fig. 1 Curvilinear coordinate system generated by the mapping (14) for K=16.

4 Numerical example

In [2] we demonstrated the conservation properties of (4) on affine elements. In this
section we extend these results to non-affine, curvilinear grids.

In order to show that even in curvilinear coordinates the conservation laws are
satisfied up to machine precision we solve the scalar diffusion-reaction problem on
the spectral element grid shown in Figure 3. The spectral element mesh consists of
K×K elements

x(ξ ,η) = ξ + csin(πξ )sin(πη) ,

y(ξ ,η) = η + csin(πξ )sin(πη) ,
(ξ ,η) ∈ [−1,1]2 . (14)

This curvilinear mesh was also used in [7, 9, 17].
For this test problem we use A = I and γ = 1 and as exact reference solution

φex(x,y) = sin(πx)sin(πy). Although the material parameters are trivial in the (x,y)-
coordinates, this is no longer the case when the equations are transformed to (ξ ,η)-
coordinates, see [2]. In Figure 2 h-convergence of the unknowns φ , v, u and ψ in
the L2-norm is depicted for K = 1, . . . ,16 and N = 1, . . . ,6. The convergence rates
are optimal in all unknowns. In Figure 3 the residuals of ∇ · u+ψ and ∇× v are
plotted in the L∞-norm as a function of h = 2/K and N. The conservation relations
are satisfied up to machine precision, independent of the mesh size, the particular
mesh shape (i.c. curved grid) and polynomial degree. The slight increase in error
with h-refinement and p-enrichment is a result of the increase in condition number,
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Fig. 2 Convergence plots of φ , v, u and ψ with h-refinement for various polynomial approxima-
tions.
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Fig. 3 Convergence plots of ∇ · u+ψ , and ∇× v with h-refinement for various polynomial ap-
proximations.
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since in this study the full system resulting from (4) was solved. In practice this is
not necessary, because if we know a priori that we can satisfy the conservation laws
exactly, we might as well use the reduced functional

J R((φ ,u); f ) =
1
2

(∥∥A−1/2(u+A∇φ
)∥∥2

0 +
∥∥γ
−1/2(

γφ +∇ ·u− f
)∥∥2

0

)
, (15)

and determine v from φ and ψ from u in a post-processing step using (10) and (13).
In summary,

when the reduced least-squares functional (15) is used to calculate φ h and uh

and vh and ψh are derived in a post-processing step using (10) and (13) and
the associated expansions (9) and (12) for vh and ψh, then for all meshes and
all polynomial degrees

‖∇×vh‖L∞ = 0 ‖∇ ·uh +ψ
h‖L∞ = 0 ,

that is, the least-squares formulation is exactly locally conservative.

5 Conclusions

Despite all its advantages, lack of conservation is one of the major drawbacks of
least-squares finite element methods implemented using standard C0 elements. In
this paper we have shown that by combining an appropriate choice of a least-squares
functional with compatible finite element spaces, one can define a least-squares
method that is conservative up to a machine accuracy.

In practice, one can use the reduced functional (15) in which case the conserva-
tion laws are identically satisfied regardless of the coarseness and shape of the grid
as well the approximation order. The price we pay is that we can no longer use our
favorite C0-elements.
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